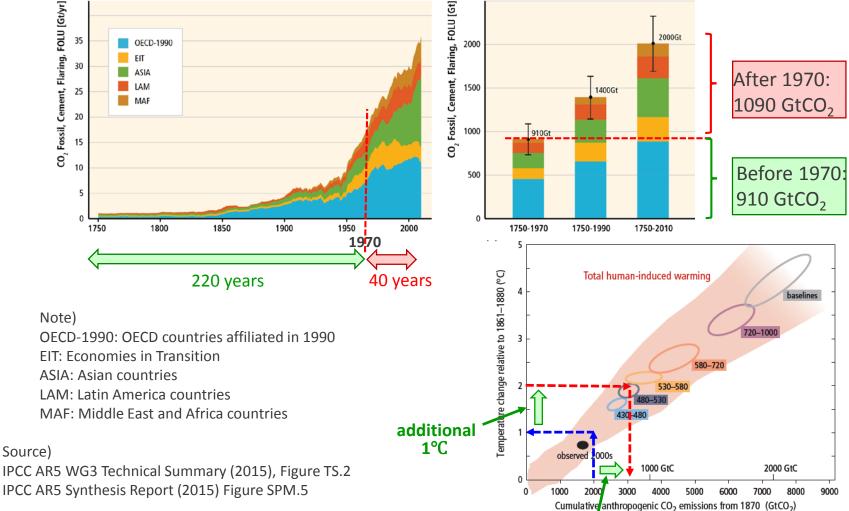
International Meeting on Land Use and Emissions in South/Southeast Asia
Ho Chi Mihn City, Vietnam
17-19 October 2016

LLGHG (Long-Lived GHGs), SLPCs (Short-Lived Climate Pollutants), Air Pollutants Emissions Projections and Ructions in Asia and the World

Tatsuya HANAOKA


Center for Social and Environmental Systems
National Institute for Environmental Studies
Japan

Implication of the 2 °C increase relative to pre-industrial levels - why important to think of cumulative emissions? -

- Anthropogenic cumulative CO₂ emissions have more than doubled from 1750-1970 to 1970-2010
- Remaining cumulative CO₂ emissions (i.e. carbon budgets) staying below 2°C are around 1000 GtCO₂

Source)

IPCC AR5 WG3 Technical Summary (2015), Figure TS.2

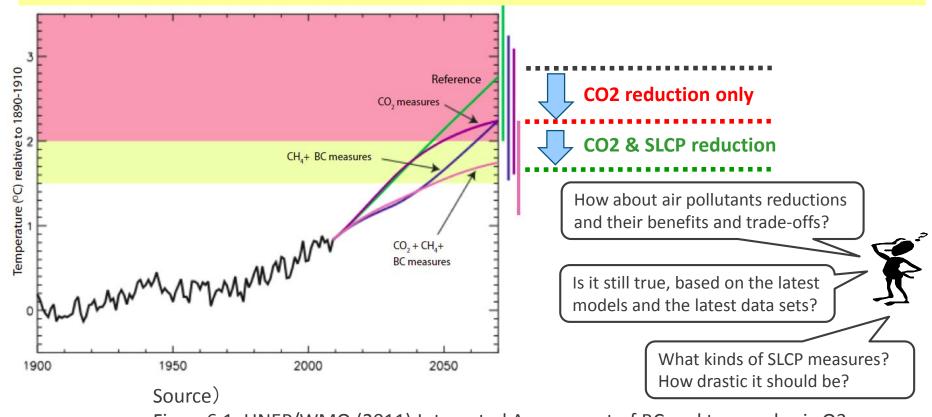
(Intended) Nationally Determined Contributions - example of submitted data -

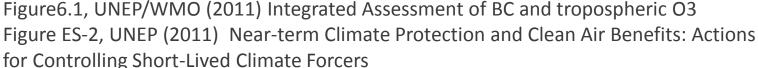
Cautions: 1) Base year and target year are not unique among countries.

2) Target characteristics (i.e. intensity target, emission target etc) are not unique

amongcou Country	ntries. Base year	Target year	Overview of targets
EU	1990	2030	At least, 40% GHG reduction by 2030 compare to the 1990 level
USA	2005	2025	• 26 – 28 % GHG reduction compare by 2025 to the 2005 level
Russia	1990	2030	• 25 – 30 % GHG reduction by 2030 compare to the 1990 level
China	2005	2030	 60 – 65% reduction by 2030 in the unit of CO2 emission per GDP compared to the 2005 level. Peaking CO2 emissions around 2030 and making best efforts to peak early Non-fossil fuels share in primary energy consumption to around 20% by 2030
India	2005	2030	 33 – 35% reduction by 2030 in the unit of GHG emission per GDP compared to the 2005 level. Non-fossil fuels share in electric power capacity to around 40% by 2030
Brazil	2005	2025	• 37% GHG reduction by 2025 compared to the 2005 level (subsequent contribution: 43% GHG reduction by 2030 compared to the 2005 level)
Mexico	2005	2030	 22% GHG reduction and 51% BC reduction by 2030 compared to the 2005 level In a conditional manner, 36% GHG reduction and 70% BC reduction by 2030 compared to the 2005 level
Indonesia	BaU	2030	 26% and 29% GHG reduction by 2020 and 2030, respectively, compared to the BaU emission level In a conditional manner, 41% GHG reduction by
Korea	BaU	2030	• 37% GHG reduction by 2030 compared to the BaU emission level
Japan	2013	2030	• 26% GHG reduction by 2030 compared to the 2013 fiscal year level (i.e. 25.4% GHG reduction compared to the 2005 fiscal year level)

Summary of scientific findings about emission gaps among NDCs and the pathways staying below 2°C


- ◆ INDCs are insufficient and not in line with pathways to stay below 2°C, but INDCs are an starting point to move the world toward the 2°C emissions pathways.
- ◆ Even if INDCs are fully implemented, the required rate of mitigation measures are stringent and rapid after 2030, in order to achieve the 2°C pathways.


Institute	Aggregated global GHG emission levels, based on pledged targets	Remaining gaps with emissions pathways staying below 2°C	Temperature increase above pre-industrial level, based on pledged targets
IPCC (2014)	52–56 Gt CO2eq in 2020 (Note: Cancun pledges)	8–12 Gt CO2eq in 2020	correspond to staying below 3 °C target
UNFCCC (2015)	52.0-56.9 Gt CO2eq in 2025 53.1-58.6 Gt CO2eq in 2030	4.7-13.0 Gt CO2eq in 2025 11.1-21.7 Gt CO2eq in 2030	2.7°C of waring by 2100
UNEP (2015)	53-54 Gt CO2eq in 2025 54-56 Gt CO2eq in 2030	5– 7 Gt CO2eq in 2025 12–14 Gt CO2eq in 2030	<3.0–3.5°C of waring by 2100
PBL (2015)		12-14 Gt CO2eq in 2030	
IDDRI (2015)	54 Gt CO2eq in 2030		
Climate Action Tracker (2015)	51.6–54.1 Gt CO2eq in 2025 52.3–55.1 Gt CO2eq in 2030	17 Gt CO2eq in 2030	2.7°C (range of 2.2–3.4°C) of waring by 2100
Climate initiative (2015)			3.2–3.5°C of waring by 2100
NIES (2015) SA-PAGRIC INTEGRATED MODEL NIES JAPAN	51.8 Gt CO2eq in 2030	13 Gt CO2eq in 2030	3.3°C of waring by 2100

UNEP/WMO SLCP report (2011)

- Reducing of SLCP emissions & Inhibiting Temperature Rise -

- lacklose Reducing SLCPs (CH₄, BC, tropospheric O₃) offers a realistic opportunity to significantly reduce the rate of global warming over the next two to four decades.
- lacklose If fully implemented by 2030, it reduces global warming between 2010 to 2040 by about 0.4 0.5 °C

MOEJ-S12: Promotion of climate policies by assessing environmental impacts of SLCP and seeking LLGHG emission pathways (FY2014 – FY2018)

Goal: To develop an integrated evaluation system for LLGHG and SLCP mitigation policy, by interconnecting emission inventory, integrated assessment models, and climate models.

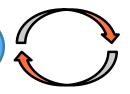
Theme 1: Air quality change event analysis

- Analysis on regional AQ change
- Development of emission inventory
- Inversion algorithms of emission estimation

Theme 2: Integrated model and future scenarios

- Global socio-economic scenarios
- National & regional emissions scenarios
- Urban & household emissions AQ assessment

Theme 3: SLCP impacts on climate & environment


- Impact assessment of aerosols & GHG
- Assessment of health, agriculture, water cycle, sea level rise

Improved emission inventory

Regional Emission
Inventories and
Chemical Transfer
Model

Integrated
Assessment
Model (AIM)

SLCP emissions scenarios

Climate and Environment Model

Assessment of activities/policies

Feedback of impacts

Chemical transfer model and emission inventory in Asia

AIM/Enduse model
Socio-economical & emissions scenario

Climate model, earth system model
Climate change impact & adaptation

Theme 4: Integrated operation system (Toolkits, data archive)

Science

Model improvement

Experiment setup
Database development
Metric definitions

Stakeholders Policy makers

System utilization

CCAC, UNFCC, IPCC, EANET
Proposal and assessment of climate and
air pollution policies

Society

Information transmission

MDG • SDG • Future Earth

Regional strategy

Global strategy

Challenges of S-12 Theme 2

- 1. Estimating future (energy & non-energy) service demands based on new socio-economic scenarios (i.e. SSPs: Shared-Socioecnomic Pathways) considering climate change and environmental impacts
- 2. indicating emissions scenarios of Long-lived GHGs(LLGHG) and Short lived Climate Pollutants (SLCP) and air pollutants, based on new service demands estimations
- 3. Evaluating co-benefits of LLGHG mitigation measures and SLCP reduction measures, and analyzing regional characteristics in detail, in a manner consistent with long-term global scenarios such as 2°C target.
- 4. Exploring the appropriate balance among LLGHGs measures, SLCPs measures and air pollutants measures from the viewpoint of health benefits and climate benefits.

AIM (Asia-pacific Integrated Model) - International Research Network -

Japan National Institute for Environmental Studies

Kyoto University

Mizuho Information Research Institute

China Energy Research Institute, NDRC

Institute of Geog. Sci. & Nat. Res. Research, CAS

Institute of Env. & Sus. Dev. in Agri, CAAS

Guangzhou Institute of Ene. Conversion, CAS

India Indian Institute of Management, Ahmedabad

School of Planning and Architecture, Bhopal

Korea Seoul National Univ.

Korea Environment Institute

Thailand Asian Institute of Tech.

Thammasat Univ.

King Mongkut's Univ.

Malaysia Univ. Tech. Malaysia

Indonesia Bogor Agri. Univ.

Bandung Institute of Tech.

Austria IIASA

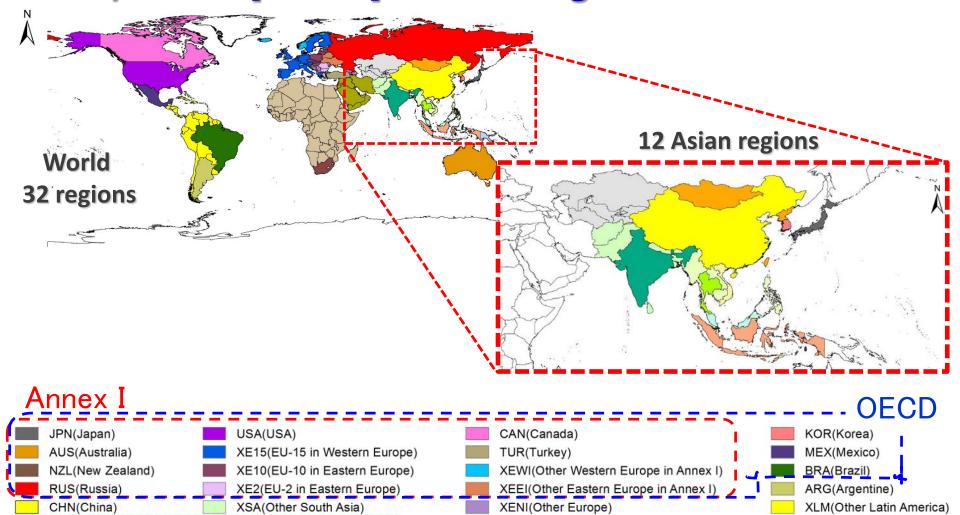
Netherlands PBL

USA Pacific Northwest National Lab.

Energy Modeling Forum, Stanford Univ.

In addition, collaborating with Vietnam, Cambodia, Bangladesh, Nepal, Taiwan, ...

Characteristics of AIM/Enduse model


- Bottom-up type model with detailed technology selection framework with optimizing the total system cost
- Recursive dynamic model (=Calculating year by year)
- Assessing technological transition over time
- Analyzing effect of policies such as carbon/energy tax, subsidy, regulation and so on.
- ◆ Target Gas: both Long-Lived GHGs and Short-Lived Climate Pollutants CO₂, CH₄, N₂O, HFCs, PFCs, SF₆, CFCs, HCFCs, SO₂, NOx, BC, etc
- Target Sectors : multiple sectors

power generation sector, industry sector, residential sector, commercial sector, transport sector, agriculture sector, municipal solid waste sector, fugitive emissions sector, F-gas sector

(each of these can be further disaggregated into sub-sectors)

AIM/Enduse[Global] model - Regional Classification -

IND(India)

IDN(Indonesia) THA(Thailand) XEA(Other East Asia)

MYS(Malaysia)

XSE(Other South-east Asia)

ASEAN

VNM(Viet Nam)

XCS(Central Asia)

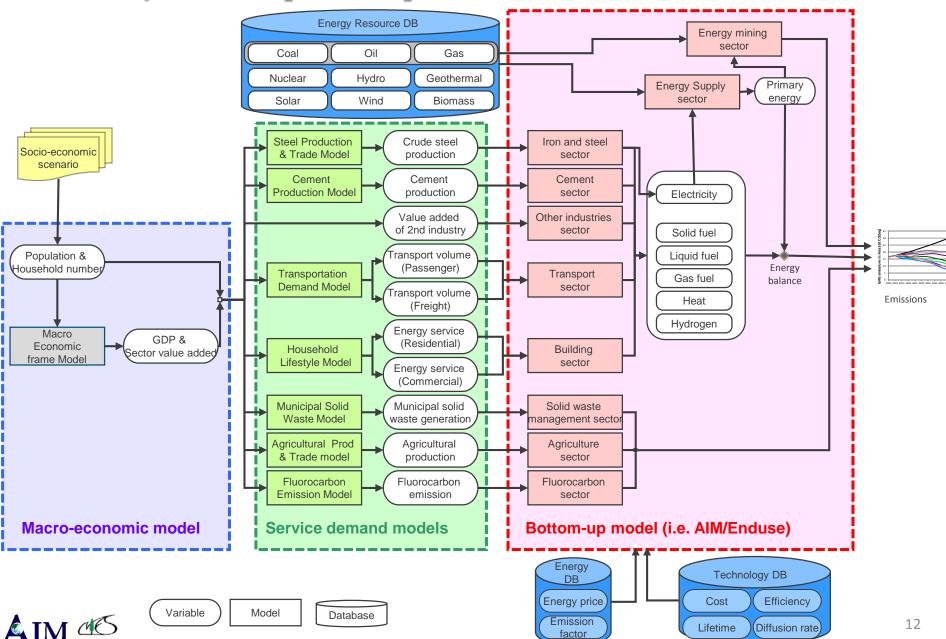
XOC(Other oceania)

ZAF(South Africa)

XAF(Other Africa)

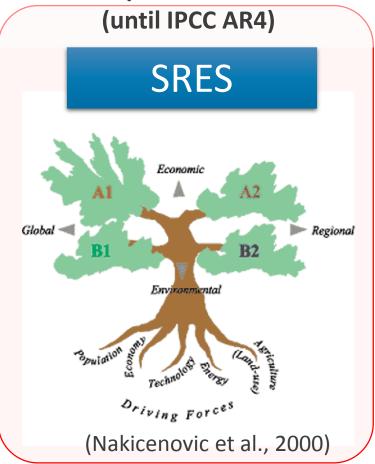
XME(Middle East)

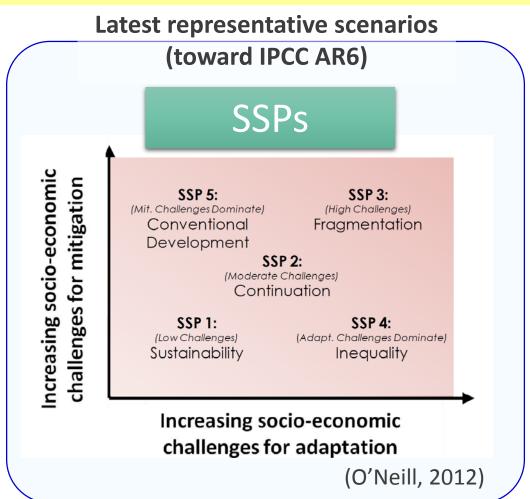
AIM/Enduse[Global] model - Target Gases and Sectors


Mitigation options listed in the following sectors are considered in the AIM/Enduse[Global] model

Sector	Sub sectors whose mitigation actions are considered in Enduse model (other subsectors are treated as scenario)						
Power generation	Coal power plant, Oil power plant, Gas power plant, Renewable (Wind, Biomass, PV), Nuclear, Hydro, Geothermal, Heat						
Industry	Iron and steel, Cement, Other industries (Boiler, motor etc)						
Transportation	Passenger vehicle, Truck, Bus, Ship, Aircraft, Passenger train, Freight train (except for pipeline transport and international transport)						
Residential & Commercial	Cooling, Heating, Hot-water, Cooking, Lighting, Refrigerator, TV, Other equipments						
Agriculture	Livestock rumination, Manure management, Paddy field, Cropland						
MSW	Municipal solid waste, Waste water management						
Fugitive	Fugitive emission from fuel production						
Fgas emissions	By-product of HCFC-22, Refrigerant, Aerosol, Foams, Solvent, Etching, Aluminum production, Insulation gas, others.						

	CO2	CH4	N20	HFCs	PFCs	SF6	CFCs	HCFCs	SO2	NOx	ВС	ОС	PM10	PM2.5	СО	NH3	NMVOC	Hg
Fuel combustion	~	~	>						~	~	>	/	•	•	•	~	~	
Industrial process	~	~	>	>	•	~	•	•	~		>	/	•	~	/	~	~	
Agriculture		<	>													/		
Waste		/																
Fuel mining		✓																
Others	/	/	/													/	'	

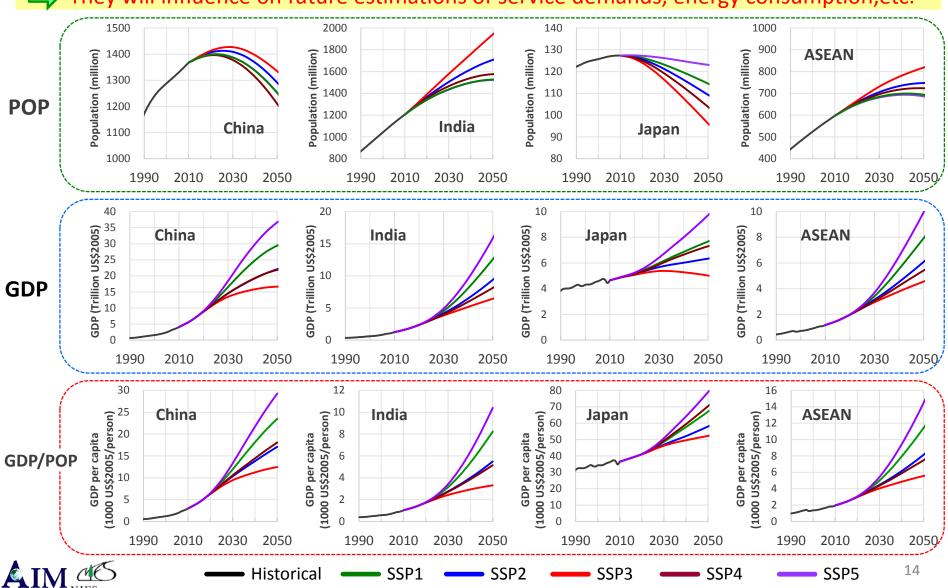

AIM/Enduse[Global] model and element models



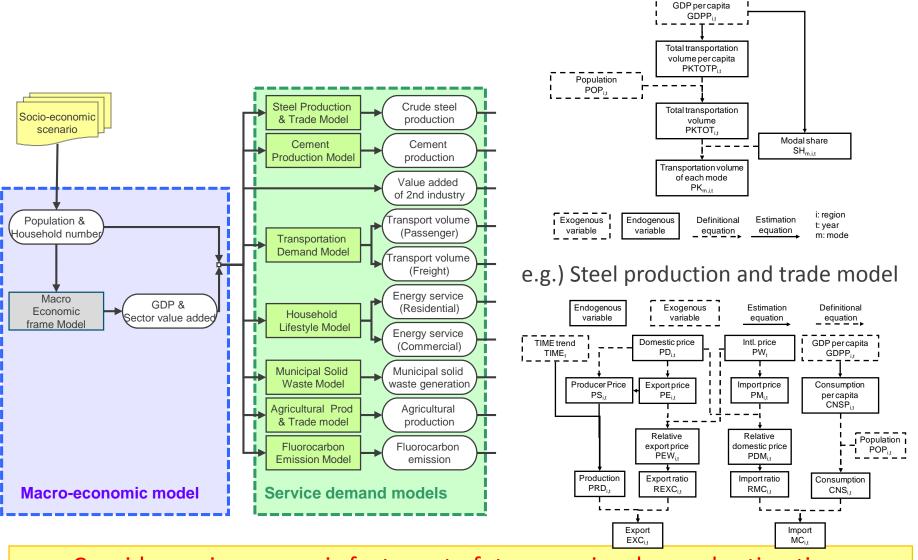
Scenario Dimensions – SSPs (Shared Socioeconomic Pathways) -

See details about quantitative data and qualitative stories https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about

Previous representative scenarios



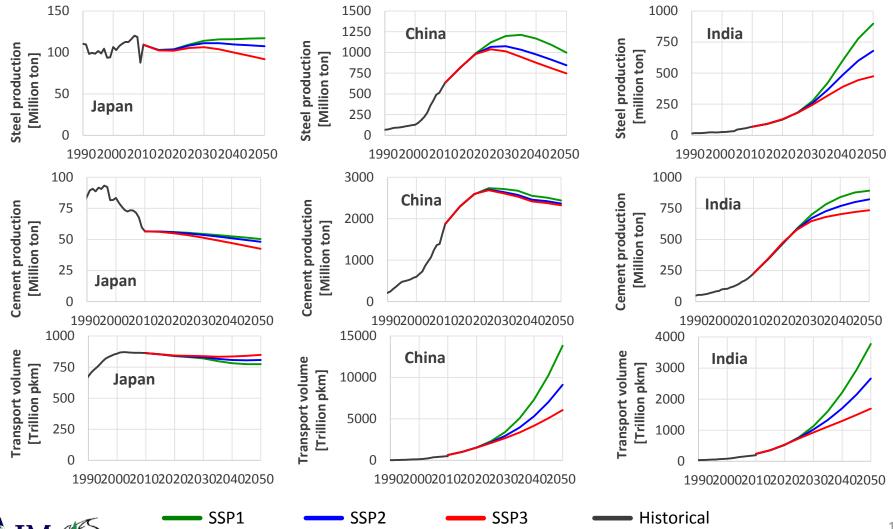
Population and GDP in Asia in SSP scenarios


Characteristics of socio-economic dynamics are different depending on countries & scenarios

They will influence on future estimations of service demands, energy consumption, etc.

AIM/Enduse[Global] model and element models

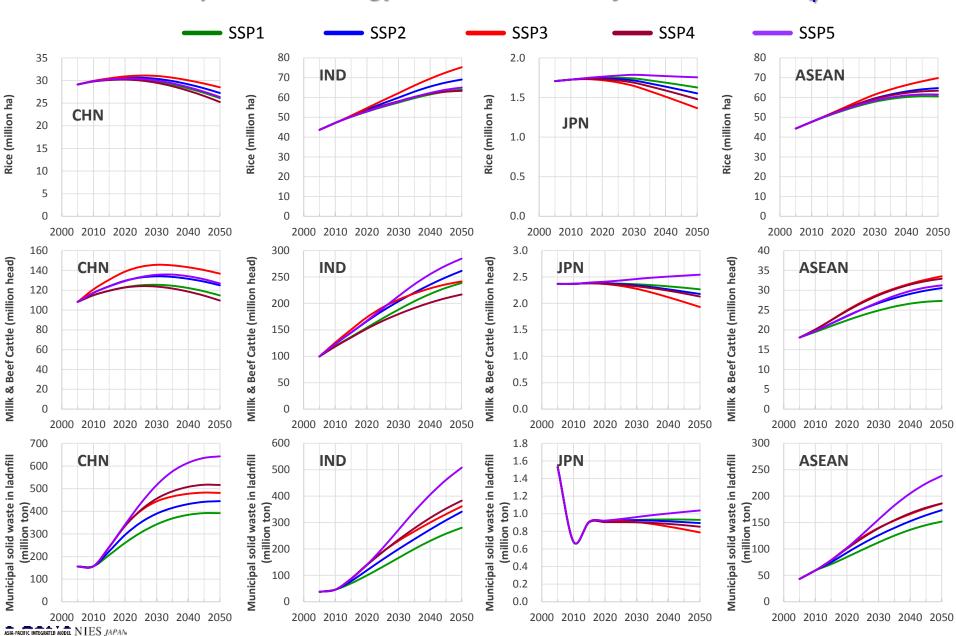
E.g.) Passenger transport volume estimation mode

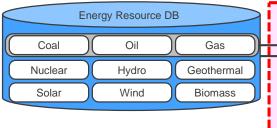


Consider socie-economic features to future service demand estimations in each sector and country (i.e. POP, GDP, are consistent across sectors and countries)

Service Demand Estimation based on SSPs

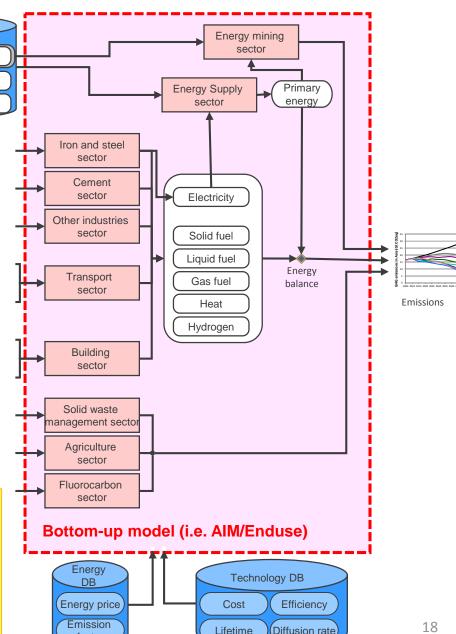
- example of energy-related sectors: major sources for CO2, SLCPs & APs -


Future service demands are largely different by sector, country and scenario, depending on socio-economic profiles in each country.



Service Demand Estimation based on SSPs

- example of non energy-related sectors: major sources for CH₄ -

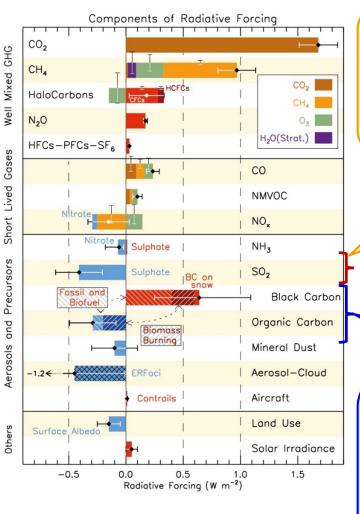

AIM/Enduse[Global] model and element models

By energy, sector and country, we can set various constraints such as

- ✓ Technology in the base year
- ✓ Energy balance in the base year
- ✓ Technology diffusion rate
- ✓ Speed of technology diffusion rate
- ✓ Technology constraints
- ✓ Energy constraints
- ✓ Speed of energy efficiency improvement
- √ Technology cost
- ✓ Induced technology costs etc

Select technologies to satisfy future service demands by sector and to balance supply and demand, under various constraints & under minimizing total system costs

Overview of mitigation measures


various mitigation measures are available for promoting energy efficiency on both the demand and supply side, as well as reducing air pollutant by removal devices.

Four major groups of mitigation measures on GHG and air pollutants

- - e.g: desulfurization equipment $[=SO_2 \text{ reduction}]$, denitrification equipment [=NOx reduciton], dust-collecting equipment [=BC, PM reduction], fertilization management in agriculture $[=N_2O \text{ reduciton}]$, manure management $[=CH_4, N_2O \text{ reduction}]$, waste management $[=CH_4 \text{ reduction}]$
- ③ Improvement of energy efficiency ← Effective for reducing multiple gases e.g.: Introduction of high-energy efficient technologies and reduction of energy consumption [=CO₂•APs• BC reduction], Low-carbon power in the supply side and electrification in the demand [=CO₂•APs• BC reduction]

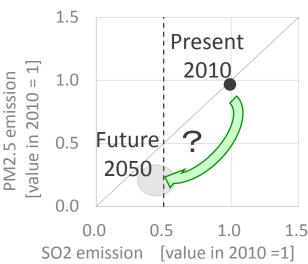
Seeking for Emissions Pathways of GHGs, SLCPs and APs - climate impacts of reducing SO₂ -

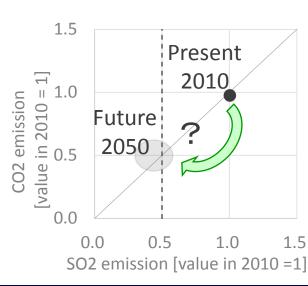
- ◆ From the viewpoint of health impacts, SO₂ should be reduced largely.
- ◆ From the viewpoint of climate impacts, due to local cooling effects, SO₂ should not be reduced drastically.

If low-carbon actions toward 2 °C target are taken,

- SO₂ will be reduced largely, by necessity
- Not only BC but also OC will be reduced simultaneously.




- ◆ From the viewpoint of health impacts, BC should be reduced largely.
- ◆ From the viewpoint of climate impacts, BC should be reduced largely.
- ◆ From the viewpoint of climate impacts, due to local cooling effects, OC should not be reduced drastically.



Overview of future scenario concepts in this study

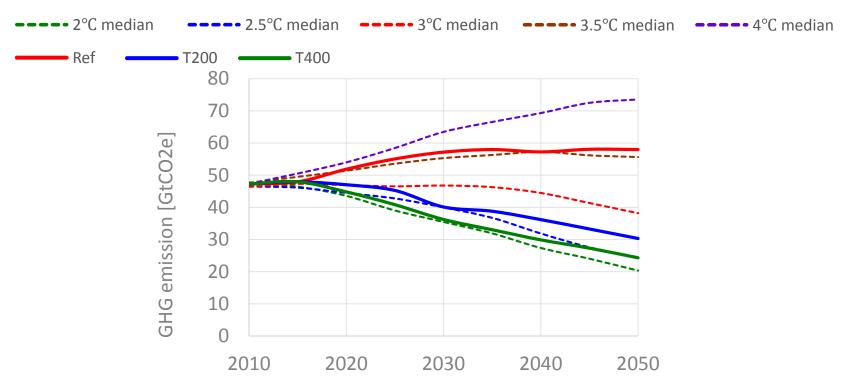
- Seeking for Balance of LLGHGs, SLCPs, air pollutants emissions -
- 1 Targeting at achieving the 2 degree target, as the COP21 decided
- ② From the viewpoint of climate impacts of positive radiative forcing, LLGHGs $(CO_2, N_2O, HFCs, PFCs, SF_6)$ and SLCPs (CH_4, BC) should be reduced largely.
- ③ From the viewpoint of health impacts, air pollutants ($PM_{2.5}$, SO_2 , BC, etc) should be reduced to a high enough level .
- 4 From the viewpoint of climate impacts of negative radiative forcing, some air pollutants (SO₂, OC) are preferable to be reduced only to some extent.

Overview of Scenario Settings

- Seeking for balance of LLGHGs, SLCPs, air pollutants emissions -

- Changing the settings of carbon taxes in order to discuss low-carbon society
- ☐ Changing the levels of air-pollutant control measures in order to discuss local air quality
- ☐ Changing energy policy choices: one of examples of discussing cobenefits & tradeoffs.
 - ① Promoting drastic energy shift (from high-carbon fossil fuel to less-carbon intensive fuels or renewable energies) rather than coal & biomass power plant with CCS
 - ② Allowing coal & biomass power plant with CCS rather than drastic energy shift.

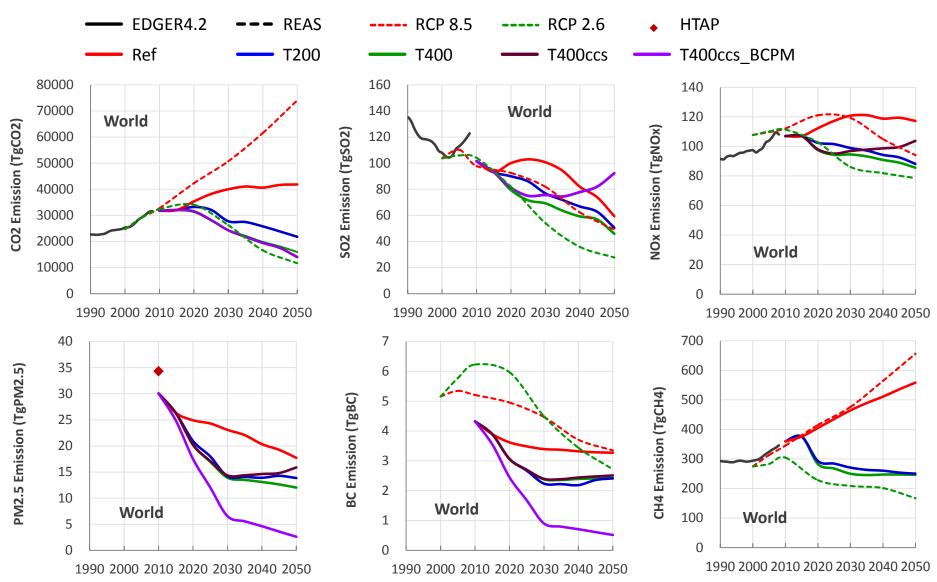
Scenario name	2010	2015	2020	2030	2040	2050	Air pollution measures	Energy policy	
Reference: SSP2	0	0	0	0	0	0	SSP2 level (i.e. BaU)	SSP2 level (i.e. BaU)	
T200	0	0	50	100	150	200	SSP2 level	Promoting energy shift rather than coal & biomass power with CCS	
T400	0	0	100	200	300	400	SSP2 level	Promoting energy shift rather than coal & biomass power with CCS	
T400ccs	0	0	100	200	300	400	SSP2 level	Allowing coal & biomass power with CCS rather than drastic energy shift	
T400ccs_BCPM	0	0	100	200	300	400	SSP2 level +BCPM measure high	Allowing coal & biomass power with CCS rather than drastic energy shift	
T400ccs_ALL	0	0	100	200	300	400	SSP2 level + all air pollutant measure high	Allowing coal & biomass power with CCS rather than drastic energy shift	



[Unit: US\$/tCO, eq]

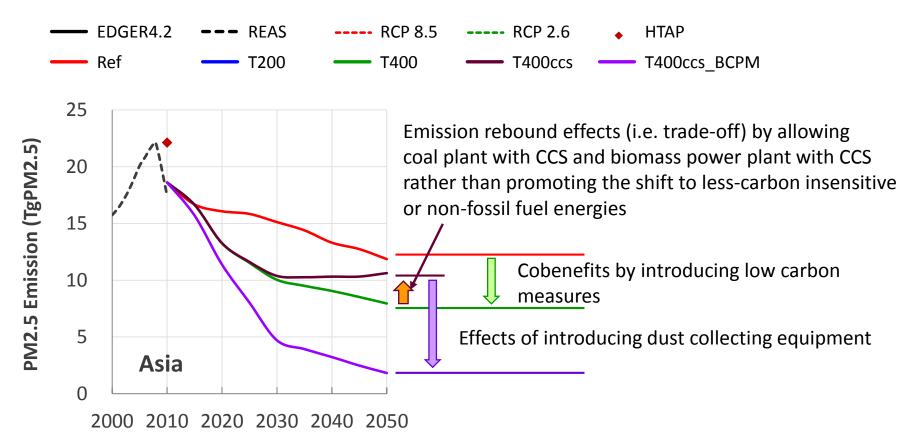
Global Emissions pathways in this study

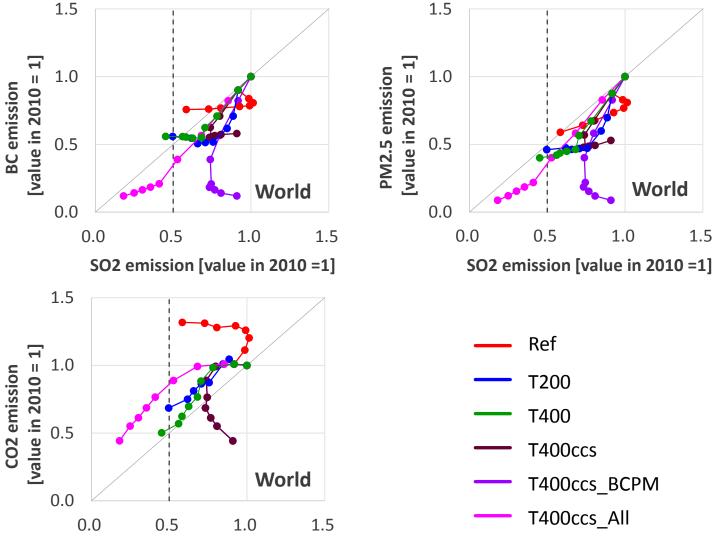
- comparing with a set of well-known GHG emissions pathways by the UNEP Gap Report -


- ☐ The reference scenario corresponds to the level of 3.5°C increase pathway.
- To achieve the 2°C target, future carbon price will be much higher than the current levels, around 400 US\$/tCO₂eq in 2050

Note 1) Dashed lines show median values in the range of well-known GHG emissions pathways with a "likely" (greater than 66%) chance of staying below 2°C, 2.5°C, 3°C, 3.5°C, 4°C, compared to pre-industrial levels reported by UNEP Gap Report

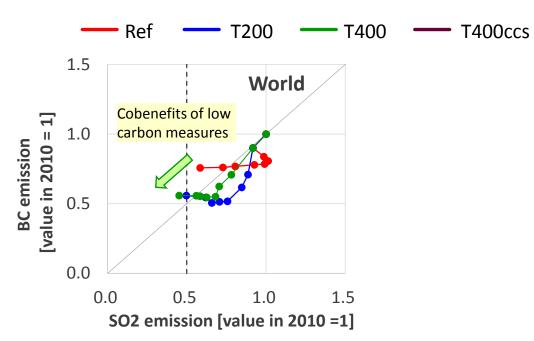
Emissions pathways of CO2, SLCPs, Air pollutants


- compared to emission inventory (EDGER, REAS, HTAP) & emissions pathways of RCP8.5, RCP2.6 -

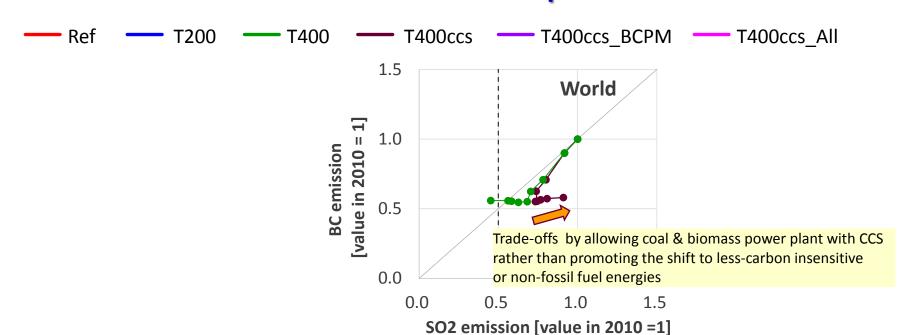

How to interpret emissions scenarios in this study - example of PM_{2.5} in Asia

- Due to low carbon measures, there are large cobenefits of reducing air pollutants.
- However, if only considering low carbon measures, there are tradeoffs (i.e. emission rebound effects) from the viewpoint of nonCO2 emissions
- □ Combinations of low carbon measures and nonCO2 measures are important

Seeking for balanced emissions pathways - reduction ratio among GHGs, SLCPs and Air pollutions -

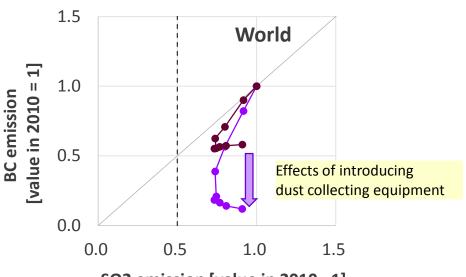


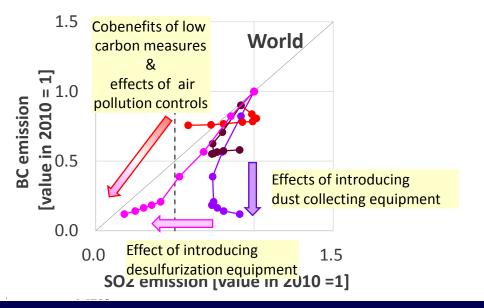
SO2 emission [value in 2010 =1]



T400ccs BCPM

T400ccs All




— Ref — T200 — T400 — T400ccs — T400ccs_BCPM — T400ccs_All

SO2 emission [value in 2010 =1]

— Ref — T200 — T400 — T400ccs — T400ccs_BCPM — T400ccs_All

ご清聴ありがとうございました Thank you for your attention

