Aerosols, Southeast Asia and the AERONET program

B. Holben, D. Giles, I. Slutsker, T. Eck, A. Smirnov, J. Schafer, A. Sinyuk, M. Sorokin, J. Reid, N. O’Neil...
LCLUC Regional International Meeting, Yangon, Myanmar
Talk Topics

• The Challenge: Understanding aerosol particles and their metrological & climate impact in SE Asia (7-SEAS perspective)

• AERONET contributions and improvements for the future

• Summary
Aerosol Particles as an Interdisciplinary Environmental Problem in SE Asia
(From the literature)

- **Environmental quality and chemistry**: Biological and visual air quality, acid deposition, photochemistry, food contamination.
- **Direct radiative forcing**: Atmospheric heating and cooling, surface cooling.
- **Semi-direct**: PBL stabilization, surface fluxes, cloud feedback
- **Clouds & Storms**: Cloud lifetime, precipitation, severity
- **Geochemical cycles**: Carbon & Nutrients
- **Inference/tracers**: Indicators of air mass types and transport
- **Oceans**: Radiation perturbations can impact ocean photochemistry and have even been seen in the coral record.
Investigate the impacts of aerosol particles on *weather and the total SE Asian environment*

In order to do this, we need input from seven science areas:

- Aerosol lifecycle and air quality
- Tropical meteorology
- Radiation and heat balance
- Clouds and precipitation
- Land processes and fire
- Oceanography (phys. and bio.)
- Verification, analysis and prediction
Remote Sensing: A Fundamental Tool for Aerosol Science

- We are at the pinnacle of remote sensing observations: Passive solar and IR, lidar, radar, and microwave.
- Space based remote sensing knows no international boundaries and ground based sun photometer and lidar sites are expanding regionally.
- Everything from fire detection to surface winds can be integrated or assimilated into models now.
- Almost all meteorological indicators are remote sensing based.
- But:
 - most aerosol products are underdetermined.
 - SE Asia represents one of the most complex observing environments on the planet.
MISR 2001-2011 Average AOD Products tells a good story of aerosol emissions and transport. But how quantitative is it?

- Chinese pollution and dust
- Indian Pollution
- Pan SE Asian Smoke
- Hanoi Superplume
- Thai and Myan. Pollution and Smoke
- Thai Pollution and Smoke
- Cambodia Smoke And Ho Chi Min
- Central Sumatra Burning
- Southern Kalimantan Burning
- Jakarta Superplume
- Pearl River Delta
- Manila
AERONET - The Ground-Based Satellite

Mission Objectives:
• Characterize aerosol optical properties
• Validate Satellite & model aerosol retrievals
• Synergism with Satellite obs., ESS and CC

Internationally Federated
- GSFC & PHOTONS (Fr)
- Spain, Australia, Brazil, Russia
- Canada, Italy, China, SE Asia...

~600 instruments
~450 Operational sites
>5. x 10^8 AOD obs since 1993
Expansion to Asia, Africa high latitudes and over water sites
Support NASA ESS activities

Parameters measured: \(\tau, \omega, \Theta, \text{size}, n, k \) and WV, clds, \(L_{\text{wn}} \)
Open data access via website: http://aeronet.gsfc.nasa.gov/
AERONET’s First Light (1993)

Holben et al., 1998

Dubovik and King 2000

• No assumptions...
• Absorption, Shape ...

Holten, Holben, Brent, et al. (1998)
Seasonal variation of AOD from 5 selected AERONET sites:

- Chiang Mai
- Dongsha
- Lulin
- Mukdahan
- Bangkok
Maritime Aerosol Network (MAN) as a Component of AERONET

- MAN represents an important strategic sampling initiative and ship-borne data acquisition complements island-based AERONET measurements.

MAN coverage - October 2006 – September 2012

In the last several years data acquisition was extended to the areas that previously had very little or no coverage at all.
AERONET V3 L1.5V: Sensor Head Temperature Screening

- Sensor Head Temperature Anomalies
 - Erroneous sensor temperatures adversely affect the magnitude of AOD for temperature sensitive channels

Utilizes NCEP temperature as ambient baseline
AERONET Version 3 L1.5V: Solar Eclipse Screening

- Various solar eclipses affect AOD by changing incident extraterrestrial radiation
- AOD is maximum at maximum obscuration of the Sun
 - AOD calculation uses calibration coefficient that is not adjusted for eclipse

* AOD correction may be implemented
V2 L2 vs. V3 L1.5V
All Instruments (1993-2015)

• V2 and V3 compared for the same L1.5 points
• V3 L1.5V point removal is comparable to V2 L2
• V3 L1.5V retained ~2% more data overall

% Difference in the Number of Points Removed for Concurrent Level 1.5 (All)

%Diff<0: V3 L1.5V retained more than V2 L2
%Diff>0: V3 L1.5V removes more than V2 L2
Indonesian Fires 2015 (Palangkaraya) – Current V2

Cloud cleared NRT data (Level 1.5)

Aqua MODIS
20151005T06:05 UTC

Palangkaraya

Cirrus contamination
Smoke not detected
Version 3 L1.0 Raw Data
Version 3 L1.5 Cloud Screened

Optically thin cirrus clouds removed

Biomass burning smoke restored for high aerosol loading events
Summary

• AERONET has provided a valuable contribution to aerosol science in SE Asia through regional assessments and validation of satellite and model forecasts

• AERONET continues to expand and considers Myanmar a high priority

• Automatic quality controls perform objective assessments throughout the entire database and provide comparable results to manual screening

• Higher quality AOD data will be available in V3 NRT
 – Due to temperature characterization, improved cloud screening, and quality controls

• High aerosol loading will be characterized under Ver. 3

➢ Version 3 AOD expected release: Spring 2016